Circuit Double Cover Conjecture - 3-edge-coloring, weight decomposition, Kotzig frame
Circuit double cover conjecture:
(Tutte ≤ 70’s, Szekeres 1973, Itai and Rodeh 1978, Seymour 1979)
Every bridgeless graph has a family of circuits that covers every edge precisely twice.
Circuit double cover conjecture:
(Tutte ≤ 70’s, Szekeres 1973, Itai and Rodeh 1978, Seymour 1979)
Every bridgeless graph has a family of circuits that covers every edge precisely twice.

CDC conjecture is true for
Circuit double cover conjecture:
(Tutte \(\leq 70's\), Szekeres 1973, Itai and Rodeh 1978, Seymour 1979)
Every bridgeless graph has a family of circuits that covers every edge precisely twice.

CDC conjecture is true for
- planar graphs
Circuit double cover conjecture:
(Tutte \(\leq 70\)’s, Szekeres 1973, Itai and Rodeh 1978, Seymour 1979)
Every bridgeless graph has a family of circuits that covers every edge precisely twice.

CDC conjecture is true for
- planar graphs
- 3-edge-colorable cubic graphs
Circuit double cover conjecture:
(Tutte ≤ 70’s, Szekeres 1973, Itai and Rodeh 1978, Seymour 1979)
Every bridgeless graph has a family of circuits that covers every edge precisely twice.

CDC conjecture is true for
- planar graphs
- 3-edge-colorable cubic graphs
- graphs with nowhere-zero 4-flow
Let \(c : E(G) \mapsto \{\text{Red}, \text{Black}, \text{Green}\} \) be a 3-edge-coloring of \(G \).
Let $c : E(G) \mapsto \{\text{Red}, \text{Black}, \text{Green}\}$ be a 3-edge-coloring of G.

![Figure: A cubic graph with a 3-edge-coloring](image-url)
Let \(c : E(G) \mapsto \{\text{Red, Black, Green}\} \) be a 3-edge-coloring of \(G \).

Figure: A cubic graph with a 3-edge-coloring
CDC induced by 3-edge-coloring

Figure: Double covering by three bi-colored even subgraphs

Circuit Double Cover Conjecture - 3-edge-coloring, weight decomposition
CDC induced by 3-edge-coloring

Figure: Double covering by three bi-colored even subgraphs

Circuit Double Cover Conjecture - 3-edge-coloring, weight decomposition
CDC induced by 3-edge-coloring

Figure: Double covering by three bi-colored even subgraphs
CDC induced by 3-edge-coloring

Figure: Double covering by three bi-colored even subgraphs
Figure: *Double covering by three bi-colored even subgraphs*
DEFINITION

Let \(w : E(G) \mapsto \{1, 2\} \) such that the total weight of every edge-cut is even (eulerian weight).
DEFINITION
Let \(w : E(G) \rightarrow \{1, 2\} \) such that the total weight of every edge-cut is even (eulerian weight).

DEFINITION
A family \(\mathcal{F} \) of circuits of \(G \) is a faithful cover with respect to \(w \) if each edge \(e \) is contained in precisely \(w(e) \) members of \(\mathcal{F} \).
DEFINITION
Let $w : E(G) \mapsto \{1, 2\}$ such that the total weight of every edge-cut is even (eulerian weight).

DEFINITION
A family \mathcal{F} of circuits of G is a faithful cover with respect to w if each edge e is contained in precisely $w(e)$ members of \mathcal{F}.

\[
\begin{array}{c c c}
2 & 2 \\
\end{array}
\]
DEFINITION
Let $w : E(G) \to \{1, 2\}$ such that the total weight of every edge-cut is even (eulerian weight).

DEFINITION
A family \mathcal{F} of circuits of G is a faithful cover with respect to w if each edge e is contained in precisely $w(e)$ members of \mathcal{F}.

![Diagram showing faithful cover concept]
Recall

DEFINITION
Let $w : E(G) \mapsto \{1, 2\}$ such that the total weight of every edge-cut is even (eulerian weight).
Recall

DEFINITION
Let $w : E(G) \mapsto \{1, 2\}$ such that the total weight of every edge-cut is **even** (eulerian weight).

DEFINITION
A family \mathcal{F} of circuits of G is a **faithful cover** with respect to w if each edge e is contained in **precisely** $w(e)$ members of \mathcal{F}.

Question
Does every bridgeless cubic graph have a faithful cover with respect to every eulerian weight?

Answer: No!
Recall

DEFINITION

Let \(w : E(G) \mapsto \{1, 2\} \) such that the total weight of every edge-cut is even (eulerian weight).

DEFINITION

A family \(\mathcal{F} \) of circuits of \(G \) is a faithful cover with respect to \(w \) if each edge \(e \) is contained in precisely \(w(e) \) members of \(\mathcal{F} \).

QUESTION

Does every bridgeless cubic graph have a faithful cover with respect to every eulerian weight?
Recall

DEFINITION
Let \(w : E(G) \mapsto \{1, 2\} \) such that the total weight of every edge-cut is even (eulerian weight).

DEFINITION
A family \(\mathcal{F} \) of circuits of \(G \) is a faithful cover with respect to \(w \) if each edge \(e \) is contained in precisely \(w(e) \) members of \(\mathcal{F} \).

QUESTION
Does every bridgeless cubic graph have a faithful cover with respect to every eulerian weight?

Answer:

No!
Recall

DEFINITION
Let $w : E(G) \mapsto \{1, 2\}$ such that the total weight of every edge-cut is even (eulerian weight).

DEFINITION
A family \mathcal{F} of circuits of G is a **faithful cover** with respect to w if each edge e is contained in precisely $w(e)$ members of \mathcal{F}.

QUESTION
Does every bridgeless cubic graph have a faithful cover with respect to every eulerian weight?

Answer: No!
Recall

DEFINITION
Let \(w : E(G) \mapsto \{1, 2\} \) such that the total weight of every edge-cut is even (eulerian weight).

DEFINITION
A family \(\mathcal{F} \) of circuits of \(G \) is a **faithful cover** with respect to \(w \) if each edge \(e \) is contained in precisely \(w(e) \) members of \(\mathcal{F} \).

QUESTION
Does every bridgeless cubic graph have a faithful cover with respect to every eulerian weight?

Answer: No!

Black edges: weight 2
Green edges: weight 1
Let G be a bridgeless graph and $w : E(G) \mapsto \{1, 2\}$ be an eulerian weight.
Let G be a bridgeless graph and $w : E(G) \mapsto \{1, 2\}$ be an eulerian weight.
Then (G, w) has a faithful cover if
Faithful circuit cover problem is true for:

Let G be a bridgeless graph and $w : E(G) \mapsto \{1, 2\}$ be an eulerian weight.
Then (G, w) has a faithful cover if
- G is planar (Seymour);
Faithful circuit cover problem is true for:

Let G be a bridgeless graph and $w : E(G) \mapsto \{1, 2\}$ be an eulerian weight. Then (G, w) has a faithful cover if

- G is planar (Seymour);
- G is 3-edge-colorable (Seymour)
Let G be a bridgeless graph and $w : E(G) \to \{1, 2\}$ be an eulerian weight. Then (G, w) has a faithful cover if
- G is planar (Seymour);
- G is 3-edge-colorable (Seymour)
- G is Petersen-minor free (Alspach, Goddyn, Z.).
A Key Lemma: 3-edge-coloring and faithful cover

(Seymour) If a cubic graph G is 3-edge-colorable, then G has a faithful circuit cover with respect to every $(1, 2)$-eulerian weight.
A Key Lemma: 3-edge-coloring and faithful cover

(Seymour) If a cubic graph G is 3-edge-colorable, then G has a faithful circuit cover with respect to every $(1, 2)$-eulerian weight.

Proof. Let $w : E(G) \mapsto \{1, 2\}$ be an eulerian weight of a cubic graph G and $c : E(G) \mapsto \{\text{Red, Black, Green}\}$ be a 3-edge-coloring of G. Here $E_w=1$ (weight one edges) induces an even subgraph, $C_{\text{Red} - \text{Black}}$ be Red-Black bi-colored even subgraph, $C_{\text{Red} - \text{Green}}$ be Red-Green bi-colored even subgraph, $C_{\text{Green} - \text{Black}}$ be Green-Black bi-colored even subgraph, Then a faithful even-subgraph cover:

$$\{ E_w=1 \cup C_{\text{Red} - \text{Green}}, E_w=1 \cup C_{\text{Red} - \text{Green}}, E_w=1 \cup C_{\text{Green} - \text{Black}} \}$$

Circuit Double Cover Conjecture - 3-edge-coloring, weight decomposition
(Seymour) If a cubic graph G is 3-edge-colorable, then G has a faithful circuit cover with respect to every $(1, 2)$-eulerian weight.

Proof. Let $w : E(G) \rightarrow \{1, 2\}$ be an eulerian weight of a cubic graph G and $c : E(G) \rightarrow \{Red, Black, Green\}$ be a 3-edge-coloring of G. Here $E_{w=1}$ (weight one edges) induces an even subgraph,
A Key Lemma: 3-edge-coloring and faithful cover

(Seymour) If a cubic graph G is 3-edge-colorable, then G has a faithful circuit cover with respect to every $(1, 2)$-eulerian weight.

Proof. Let $w : E(G) \mapsto \{1, 2\}$ be an eulerian weight of a cubic graph G and $c : E(G) \mapsto \{\text{Red}, \text{Black}, \text{Green}\}$ be a 3-edge-coloring of G. Here $E_{w=1}$ (weight one edges) induces an even subgraph, $C_{\text{Red}-\text{Black}}$ be Red- Black bi-colored even subgraph,
A Key Lemma: 3-edge-coloring and faithful cover

(Seymour) If a cubic graph G is 3-edge-colorable, then G has a faithful circuit cover with respect to every $(1, 2)$-eulerian weight.

Proof. Let $w : E(G) \mapsto \{1, 2\}$ be an eulerian weight of a cubic graph G and $c : E(G) \mapsto \{\text{Red}, \text{Black}, \text{Green}\}$ be a 3-edge-coloring of G. Here $E_{w=1}$ (weight one edges) induces an even subgraph, $C_{\text{Red-Black}}$ be Red- Black bi-colored even subgraph, $C_{\text{Red-Green}}$ be Red- Green bi-colored even subgraph,
A Key Lemma: 3-edge-coloring and faithful cover

(Seymour) If a cubic graph G is 3-edge-colorable, then G has a faithful circuit cover with respect to every $(1, 2)$-eulerian weight.

Proof. Let $w : E(G) \mapsto \{1, 2\}$ be an eulerian weight of a cubic graph G and $c : E(G) \mapsto \{Red, Black, Green\}$ be a 3-edge-coloring of G. Here $E_w = 1$ (weight one edges) induces an even subgraph, $C_{Red-Black}$ be Red- Black bi-colored even subgraph, $C_{Red-Green}$ be Red- Green bi-colored even subgraph, $C_{Green-Black}$ be Green-Black bi-colored even subgraph,
A Key Lemma: 3-edge-coloring and faithful cover

(Seymour) If a cubic graph G is 3-edge-colorable, then G has a faithful circuit cover with respect to every $(1, 2)$-eulerian weight.

Proof. Let $w : E(G) \mapsto \{1, 2\}$ be an eulerian weight of a cubic graph G and $c : E(G) \mapsto \{\text{Red}, \text{Black}, \text{Green}\}$ be a 3-edge-coloring of G. Here $E_{w=1}$ (weight one edges) induces an even subgraph, $C_{\text{Red}-\text{Black}}$ be Red- Black bi-colored even subgraph, $C_{\text{Red}-\text{Green}}$ be Red- Green bi-colored even subgraph, $C_{\text{Green}-\text{Black}}$ be Green-Black bi-colored even subgraph, Then a faithful even-subgraph cover:

$$\{E_{w=1} \triangle C_{\text{Red}-\text{Green}}, E_{w=1} \triangle C_{\text{Red}-\text{Green}}, E_{w=1} \triangle C_{\text{Green}-\text{Black}}\}$$
3-edge-coloring and faithful cover

Figure: A cubic graph with a 3-edge-coloring.
3-edge-coloring and faithful cover

Figure: A cubic graph with a 3-edge-coloring
3-edge-coloring and faithful cover

\[\Delta = \sum_{w \in E} \Delta_{Red} - \Delta_{Green} + \sum_{w \in E} \Delta_{Green} - \Delta_{Black} \]
3-edge-coloring and faithful cover

\[\begin{align*}
&= \left(\begin{array}{ccc}
1 & & 1 \\
& + & \\
& &
\end{array} \right) \\
&= \left(\begin{array}{ccc}
1 & & 1 \\
& + & \\
& &
\end{array} \right)
\]
3-edge-coloring and faithful cover

\[
\begin{aligned}
\{ E_{w=1} \Delta C_{\text{Red-Green}}, \ E_{w=1} \Delta C_{\text{Red-Green}}, \ E_{w=1} \Delta C_{\text{Green-Black}} \}
\end{aligned}
\]
3-edge-coloring and faithful cover

\[\begin{align*}
E_w &= 1 \\
\Delta C_{\text{Red} - \text{Green}} &+ \Delta C_{\text{Red} - \text{Green}} + \Delta C_{\text{Green} - \text{Black}}
\end{align*} \]
3-edge-coloring and faithful cover

\[
\begin{align*}
1 & = 1 + 1 + 1 \\
E_{w=1} & = \{ E_{w=1} \Delta C_{Red-Green}, E_{w=1} \Delta C_{Red-Green}, E_{w=1} \Delta C_{Green-Black} \}
\end{align*}
\]
3-edge-coloring and faithful cover

$$\triangle E_{w=1} = \{E_{w=1} \Delta C_{\text{Red}-\text{Green}}, \ E_{w=1} \Delta C_{\text{Red}-\text{Green}}, \ E_{w=1} \Delta C_{\text{Green}-\text{Black}}\}$$
DEFINITION: Let G be a bridgeless graph and $w : E(G) \mapsto \{1, 2\}$ be an eulerian weight.
DEFINITION: Let G be a bridgeless graph and $w : E(G) \mapsto \{1, 2\}$ be an eulerian weight. Assume that G has two bridgeless subgraphs: G_1, G_2 with $(1, 2)$-eulerian weight w_1, w_2 such that $G_1 + G_2 = G$ and $w_1 + w_2 = w$.

{(G_1, w_1), (G_2, w_2)} is a weight decomposition of (G, w).
DEFINITION: Let G be a bridgeless graph and $w : E(G) \mapsto \{1, 2\}$ be an eulerian weight. Assume that G has two bridgeless subgraphs: G_1, G_2 with $(1, 2)$-eulerian weight w_1, w_2 such that $G_1 + G_2 = G$ and $w_1 + w_2 = w$. $\{(G_1, w_1), (G_2, w_2)\}$ is a **weight decomposition** of (G, w).
DEFINITION: Let G be a bridgeless graph and $w : E(G) \mapsto \{1, 2\}$ be an eulerian weight. Assume that G has two bridgeless subgraphs: G_1, G_2 with $(1, 2)$-eulerian weight w_1, w_2 such that $G_1 + G_2 = G$ and $w_1 + w_2 = w$.\{(G_1, w_1), (G_2, w_2)\} is a weight decomposition of (G, w).

An example.

![Graph Diagram]
DEFINITION: Let G be a bridgeless graph and $w : E(G) \mapsto \{1, 2\}$ be an eulerian weight.
Assume that G has two bridgeless subgraphs: G_1, G_2 with $(1, 2)$-eulerian weight w_1, w_2 such that $G_1 + G_2 = G$ and $w_1 + w_2 = w$.
$\{(G_1, w_1), (G_2, w_2)\}$ is a weight decomposition of (G, w).

An example.

![Diagram](image_url)
Weight decomposition: two copies of 3-edge-colorable graphs

\[S = G_1 + G_2 \]

\[G_1 = G[S \cup P] \quad G_2 = G[S \cup R] \]

Figure: Both \(G_1 \) and \(G_2 \) are 3-edge-colorable
Weight decomposition: two copies of 3-edge-colorable graphs

\[S = G_1 + G_2 \]

\[G_1 = G[S \cup P] \]
\[G_2 = G[S \cup R] \]

Figure: Both \(G_1 \) and \(G_2 \) are 3-edge-colorable

\(\mathcal{F}_1 \): faithful cover of \(G_1 \) (cover \(S \) once),
\(\mathcal{F}_2 \): faithful cover of \(G_2 \) (cover \(S \) once),
Weight decomposition: two copies of 3-edge-colorable graphs

\[G_1 = G[S \cup P] \quad G_2 = G[S \cup R] \]

Figure: Both \(G_1 \) and \(G_2 \) are 3-edge-colorable

\(F_1 \): faithful cover of \(G_1 \) (cover \(S \) once),
\(F_2 \): faithful cover of \(G_2 \) (cover \(S \) once),
\(F_1 \cup F_2 \) is a CDC of \(G \).
Fact. If G is 3-edge-colorable,
Fact. If G is 3-edge-colorable, G has a 2-factor consisting of even circuits.
Fact. If G is 3-edge-colorable, G has a 2-factor consisting of even circuits.

Definition. The oddness of a cubic graph G is the smallest integer t such that every 2-factor of G has at least t odd components.
Fact. If G is 3-edge-colorable, G has a 2-factor consisting of even circuits.

Definition. The oddness of a cubic graph G is the smallest integer t such that every 2-factor of G has at least t odd components.

Oddness $= 0 \implies$ 3-edge-colorable \implies CDC.

Oddness $= 2$ (including Petersen graph) \implies CDC. (Häggkvist and McGuinness 2005, Huck 2004 (CAP))

Oddness $= 4$ \implies CDC. (Ye, Z.)

Oddness $= 6$ \implies CDC.
Fact. If G is 3-edge-colorable, G has a 2-factor consisting of even circuits.

Definition. The oddness of a cubic graph G is the smallest integer t such that every 2-factor of G has at least t odd components.

Oddness $= 0 \Rightarrow$ 3-edge-colorable \Rightarrow CDC.

(Huck and Kochol 1995)
Oddness $= 2$ (including Petersen graph)
Fact. If G is 3-edge-colorable, G has a 2-factor consisting of even circuits.

Definition. The oddness of a cubic graph G is the smallest integer t such that every 2-factor of G has at least t odd components.

Oddness $= 0 \implies$ 3-edge-colorable \implies CDC.

(Huck and Kochol 1995)
Oddness $= 2$ (including Petersen graph) \implies CDC.
Fact. If G is 3-edge-colorable, G has a 2-factor consisting of even circuits.

Definition. The oddness of a cubic graph G is the smallest integer t such that every 2-factor of G has at least t odd components.

Oddness $= 0 \implies$ 3-edge-colorable \implies CDC. (Huck and Kochol 1995)

Oddness $= 2$ (including Petersen graph) \implies CDC. (Häggkvist and McGuinness 2005, Huck 2004 (CAP))

Oddness $= 4$
Fact. If G is 3-edge-colorable,
G has a 2-factor consisting of even circuits.

Definition. The oddness of a cubic graph G is the smallest integer t such that every 2-factor of G has at least t odd components.

Oddness = 0 \Rightarrow 3-edge-colorable \Rightarrow CDC.

(Huck and Kochol 1995)
Oddness = 2 (including Petersen graph) \Rightarrow CDC.

(Häggkvist and McGuinness 2005, Huck 2004 (CAP))
Oddness = 4 \Rightarrow CDC.
Fact. If G is 3-edge-colorable, G has a 2-factor consisting of even circuits.

Definition. The oddness of a cubic graph G is the smallest integer t such that every 2-factor of G has at least t odd components.

Oddness $= 0 \Rightarrow$ 3-edge-colorable \Rightarrow CDC.

(Huck and Kochol 1995)

Oddness $= 2$ (including Petersen graph) \Rightarrow CDC.

(Häggkvist and McGuinness 2005, Huck 2004 (CAP))

Oddness $= 4 \Rightarrow$ CDC.

(Ye, Z.)

Oddness $= 6 \Rightarrow$ CDC.
If \((G, 2)\) has a weight decomposition:
\[\{(G_1, w_1), (G_2, w_2), (G_3, w_3)\}\]
If \((G, 2)\) has a weight decomposition:
\[
\{(G_1, w_1), (G_2, w_2), (G_3, w_3)\}
\]
such that each \((G_i, w_i)\) is 3-edge-colorable,
Weight decomposition into three 3-colorable graphs

If \((G, 2)\) has a weight decomposition:
\[
\{(G_1, w_1), (G_2, w_2), (G_3, w_3)\}
\]
such that each \((G_i, w_i)\) is 3-edge-colorable,
Then \(G\) has a CDC.
Weight decomposition into three 3-colorable graphs

If \((G, 2)\) has a weight decomposition:
\[\{(G_1, w_1), (G_2, w_2), (G_3, w_3)\}\] such that each \((\overline{G}_i, w_i)\) is 3-edge-colorable,
Then \(G\) has a CDC.

Which graph has such decomposition?
Definition A cubic graph H is called a *Kotzig graph* if G has a circuit double cover consisting of three Hamilton circuits.
Definition A cubic graph H is called a *Kotzig graph* if G has a circuit double cover consisting of three Hamilton circuits.

Examples: K_4, K_3, 3, Heawood graph, and dodecahedron, (and many others).

Figure: K_4: a Kotzig graph: bi-colored edges induce a Hamilton circuit.
Definition A cubic graph H is called a *Kotzig graph* if G has a circuit double cover consisting of three Hamilton circuits.

Examples: K_4, $K_{3,3}$,
Definition A cubic graph H is called a Kotzig graph if G has a circuit double cover consisting of three Hamilton circuits. Examples: K_4, $K_{3,3}$, Heawood graph, and dodecahedron, (and many others).

Figure: K_4: a Kotzig graph: bi-colored edges induce a Hamilton circuit
Figure: Heawood graph
Dodecahedron Graph

Figure: Dodecahedron
A spanning subgraph H of G is a **Kotzig frame** of G.
A spanning subgraph H of G is a \textbf{Kotzig frame} of G if H is a subdivision of a Kotzig graph.
Kotzig Frame

A spanning subgraph \(H \) of \(G \) is a **Kotzig frame** of \(G \) if \(H \) is a subdivision of a Kotzig graph.

(Goddyn, Häggkvist and Markström) If a graph \(G \) has a Kotzig frame,
A spanning subgraph H of G is a **Kotzig frame** of G if H is a subdivision of a Kotzig graph.

(Goddyn, Häggkvist and Markström) If a graph G has a Kotzig frame, then G has a CDC.
Figure: K_4 as a Kotzig Frame: three copies of Hamiltonian graphs

Circuit Double Cover Conjecture - 3-edge-coloring, weight decomposition
Figure: K_4 as a Kotzig Frame: three copies of Hamiltonian graphs

Circuit Double Cover Conjecture - 3-edge-coloring, weight decomposition
Figure: K_4 as a Kotzig Frame: three copies of Hamiltonian graphs

Circuit Double Cover Conjecture - 3-edge-coloring, weight decomposition
Proof

Figure: K_4 as a Kotzig Frame: three copies of Hamiltonian graphs

Circuit Double Cover Conjecture - 3-edge-coloring, weight decomposition
“Proof”

Figure: K^4 as a Kotzig Frame: three copies of Hamiltonian graphs

Circuit Double Cover Conjecture - 3-edge-coloring, weight decomposition
"Proof"
Figure: K_4 as a Kotzig Frame: three copies of Hamiltonian graphs

Circuit Double Cover Conjecture - 3-edge-coloring, weight decomposition
Figure: K_4 as a Kotzig Frame: three copies of Hamiltonian graphs
Conjecture (Häggkvist and Markström) If G contains a spanning subgraph H such that $G/E(H)$ is even and every component of H is an even circuit or a subdivision of Kotzig graph, then G has a CDC.
Conjecture (Häggkvist and Markström) If G contains a spanning subgraph H such that $G/E(H)$ is even and every component of H is an even circuit or a subdivision of Kotzig graph, then G has a CDC.

Several cases of the above conjecture have been verified by Goddyn, Häggkvist and Markström, Ye and Z., Z. and X. Zhang in various papers.